Consider the argument
∀x∀y((S(x,a)∧ S(a,y))→S(x,y)), ∀x¬S(x,x) ├ ∀x(S(x,a)→¬S(a,x))
My approach to formally proving this was to first eliminate ∀x and use x0 as the free variable. Then afterwards eliminate ∀y and use x0 as the free variable again.
- ∀x∀y((S(x,a)∧ S(a,y))→S(x,y)) - Premise
- ∀x¬S(x,x) - Premise
-- assumption block 1 --
x0
- ¬S(x0,x0) - ∀x e 2
- ∀y((S(x0,a)∧S(a,y))→S(x0,y)) - ∀x e 1
- (S(x0,a)∧S(a,x0))→S(x0,x0) - ∀y e 4
- ¬(S(x0,a)∧S(a,x0)) - MT 5, 3
-- assumption block 2 --
- S(x0,a) - assumption
x. ¬S(a,x0) - ?
-- end assumption block 2 --
x + 1. S(x0,a)→¬S(a,x0)
-- end assumption block 1 --
x + 2. ∀x(S(x,a)→¬S(a,x)) ∀x i 3 - x + 1
The issue I'm having, assuming the rest of the proof is on the right track, is how to get from step 7 to step x? In other words, how does one prove ¬(P∧Q) ⊦ P→¬Q?
