¬(B ∧ C) = (¬ B ∨ ¬ C) is DeMorgan's Law.
If you have access to that, then it's pretty easy.
1. A ∨ (B ∧ C) Premise
2. (¬ B ∨ ¬ C) ∨ D Premise
3. | ¬A Assumption
4. | (B ∧ C) DS 3,1
5. | ¬¬(B ∧ C) DN 4
6. | ¬(¬ B ∨ ¬ C) DeM 5
7. | D DS 2,6
8. ¬A -> D Proof 3-6
9. ¬¬A v D Mat. Imp 8
10. A v D DN 9
Without DeMorgan's,
1. A ∨ (B ∧ C) Premise
2. (¬ B ∨ ¬ C) ∨ D Premise
3. | ¬A Assumption
4. | (B ∧ C) DS 3,1
5. | | ¬ B ∨ ¬ C Assumption
6. | | B CE 4
7. | | ¬¬B DN 6
8. | | ¬ C DS 5,7
9. | | C CE 4
10.| ¬(¬ B ∨ ¬ C) Proof by contradiction 5-9
11.| D DS 2,10
12. ¬A -> D Proof 3-11
13. ¬¬A v D Mat. Imp 12
14. A v D DN 13
I'm not super-familiar with Fitch, which apparently requires two proofs by assumption and a v to do vE. but DS and vE are not identical. But in any case, we can do without both:
1. A ∨ (B ∧ C) Premise
2. (¬ B ∨ ¬ C) ∨ D Premise
3. | ¬A Assumption
4. | | (B ∧ C) Assumption
5. | | (B ∧ C) R
----
6. | | A Assumption
7. | | A ∧ ¬A ∧I 3,6
8. | | [Contra. Intr.] 7
9. | | (B ∧ C) Contra Elim 8
10.| (B ∧ C) vE 1,9,5
11.| | ¬ B ∨ ¬ C Assumption
12.| | | ¬ B Assumption
13.| | | B CE 10
14.| | | B ∧ ¬ B ∧ Introduction
15.| | | D Contradiction Elimination 14
------------------
15.| | | ¬ C Assumption
16.| | | C CE 10
17.| | | C ∧ ¬ C ∧ Introduction
18.| | | D Contradiction Elimination 17
19.| | D vE 11,15,18
--------------------
20.| | D Assumption
21.| | D Repetition
22.| D vE 2,19,21
23. ¬ A -> D Proof 3-22
24. ¬¬ A v D Material Implication 23
25. A v D DN 24
And that's closer but looking at Fitch, you may not have access to material implication.