< Page:Elementary Principles in Statistical Mechanics (1902).djvu
This page has been proofread, but needs to be validated.
36
CANONICAL DISTRIBUTION
and the system as one of an ensemble of systems of degrees of freedom distributed in phase with a probability-coefficient
which has the same modulus. Let , be the coördinates and momenta of , and , those of . Now we may regard the systems and as together forming a system , having degrees of freedom, and the coördinates and momenta , . The probability that the phase of the system , as thus defined, will fall within the limits
is evidently the product of the probabilities that the systems and will each fall within the specified limits, viz.,
We may therefore regard as an undetermined system of an ensemble distributed with the probability-coefficient
an ensemble which might be defined as formed by combining each system of the first ensemble with each of the second. But since is the energy of the whole system, and and are constants, the probability-coefficient is of the general form which we are considering, and the ensemble to which it relates is in statistical equilibrium and is canonically distributed.
This result, however, so far as statistical equilibrium is concerned, is rather nugatory, since conceiving of separate systems as forming a single system does not create any interaction between them, and if the systems combined belong to ensembles in statistical equilibrium, to say that the ensemble formed by such combinations as we have supposed is in statistical equilibrium, is only to repeat the data in different
| (94) |
| (95) |
This article is issued from Wikisource. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.