< Page:Elementary Principles in Statistical Mechanics (1902).djvu
This page has been proofread, but needs to be validated.
108
THE FUNCTION AND
falls within any given limits of energy ( and ) is represented by
If we expand and in ascending powers of , without going beyond the squares, the probability that the energy falls within the given limits takes the form of the 'law of errors'—
This gives
and
We shall have a close approximation in general when the quantities equated in (355) are very small, i. e., when
is very great. Now when is very great, is of the same order of magnitude, and the condition that (356) shall be very great does not restrict very much the nature of the function .
| (353) |
| (354) |
| (355) |
| (356) |
We may obtain other properties pertaining to average values in a canonical ensemble by the method used for the average of . Let be any function of the energy, either alone or with and the external coördinates. The average value of in the ensemble is determined by the equation
| (357) |
This article is issued from Wikisource. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.